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Abstract 

A subgroup H is called c-normal in group G if there exists a normal subgroup N and G such that 
HN = G and HnN I HG where HG = : Core(H) = ngEG Hg is the maximal normal subgroup of 
G which is contained in H. We obtain some results about the c-normal subgroups and the 
solvability of groups. 

1. Introduction 

The relationship between the properties of maximal subgroups of a finite group 

G and the structure of G have been studied by many people. It is well known that 

a finite groups G is nilpotent if and only if every maximal subgroup of G is normal in 

G. As for the class of supersolvable groups, Huppert’s well-known theorem shows that 

a finite group G is supersolvable if and only if every maximal subgroup of G has 

a prime index in G. In terms of normality, we have that G is supersolvable if and only if 

every maximal subgroup of G is weakly normal in G [S], Theorem 1.8.7. Also, some 

people try to characterize group structure using as few maximal subgroups as possible 

c2-4, 71 

Definition 1.1. Let G be a group. We call a subgroup H c-normal in G if there exists 

a normal subgroup N of G such that HN = G and HnN I HG. 

It is clear that a normal subgroup of G is a c-normal subgroup of G but the converse 

is not true. For example, S3 = C3 x C2, CZ $ S3 but C2 is c-normal in S3. 

Definition 1.2. We call a group G c-simple if G has no c-normal subgroup except the 

identity group 1 and G. 

* Project supported in part by National Natural Science Foundation of China and STFG. 
*E-mail: wym@jolly2.sci.ccny.cuny.edu. Present address: Mathematics Department, City college of New 
York, NY 10031, USA. 

0022-4049/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved. 
SSDI 0022-4049(94)00090-6 



316 Y. Wang/Journal of Pure and Applied Algebra 110 (1996) 315-320 

We can easily show that G is c-simple if and only if G is simple, which is useful in our 
discussion. 

In this paper, we give some analogue properties of normal subgroups for c-normal 
subgroups. We prove that a finite group G is solvable if and only if every maximal 
subgroup of G is a c-normal in G. We also try to minimize the number of the maximal 
subgroups to characterize the structure of G. 

Let p be a prime and p’ the complementary set of primes. Let G be a finite 
group. Then we denote M G G to indicate that M is a maximal subgroups of G. 
Also, IG: MI, denotes the p-part of IG: MI. Consider the following families of sub- 
groups. 

Definition 1.3. We define 
% = {M: M G G}. 

% = {M: M G G} with 1G :MI is composite. 
%P = {M: M G G,IG:MI, = l}. 
% =%n% 
%T = {R: M ‘1 G, N,(P) I M} for a PcSyl,(G). 
9” = UpEn %-p. 
%-PC = %-Pn%c. 
%X = %“n% C. 

Definition 1.4. 

Q,(G) = n{M: M E %p} if %p is non-empty; otherwise Qp (G) = G. 
S,(G) = n{M M E %pC} if %Pc is non-empty; otherwise S,(G) = G. 
@P(G) = fi{M: M E P} if %P is non-empty; otherwise QP(G) = G. 
P(G) = n{M: M E %S> if %s is non-empty; otherwise Q”(G) = G. 
SP(G) = n{M: M E %““‘} if J rpc is non-empty; otherwise SP(G) = G. 
S”(G) = n{M: M E PC> if 6” is non-empty; otherwise S”(G) = G. 

It is clear that all the above subgroups are characteristic subgroups of G. 

2 Preliminaries 

2. I Basic properties 

Lemma 2.1. Let G be a group. Then 
(1) If H is normal in G, then H is c-normal in G; 
(2) G is c-simple if and only if G is simple; 
(3) If H is c-normal in G, H I K I G, then H is c-normal in K; 
(4) Let K A G and K < H. Then H is c-normal in G ifand only ifH/K is c-normal in 

G/K. 



Y. Wang/Journal of Pure and Applied Algebra 110 (1996) 315-320 317 

Proof. (1) HG = G and HnG = Hg G; hence H is c-normal in G. 
(2) By (l), we only need to prove the part “if”. Assume that G is simplest but G is 

not c-simple. Then there exists a non-trivial subgroup H, 1 < H < G such that H is 
c-normal in G. By definition, there exists N< G such that H N = G, which yields that 
N # 1 and so N = G. It follows that 1 # H = HnG I HoaG, contrary to our 
assumption. 

(3) HN = G, K =KnG = H(KnN). KnN is normal in K and HnNnK 

I HonK < HK. 

(4) Suppose that H/K is c-normal in G/K. Then there exists N/K a G/K such that 
G/K = (H/K)(N/K) with (H/K)n(N/K) I (H/K),,,. It is easy to see that G = 
H N and HnN I Ho. The converse is the same. 0 

Lemma 2.2. Let G be a finite group. Then 

(1) Q’(G) is p-closed for every p E z(G); 
(2) W(G) is nilpotent; 

(3) SP(G) is p-closed for the maximal prime divisor p E z(SP(G)); 

(4) S”(G) has Sylow tower. 

Proof. (1) Let Pi E Syl,(@P(G)). By Sylow’s theorem, there exists P E Syl,(G) 

such that P1 = Pn@P(G). If P1 $ G, then there exists M Q G such that N,(P) I 
NG(P1) I M Q G and so !Dp(G) I ME %p. By Frattini argument, G = QP(G)No(PI) I 
M G G, a contradiction. Therefore P,II G. 

(2) It is clear that W(G) = nPEnCG, QiP(G). By (l), W(G) is p-closed for every 
p E rc(G), this follows that P(G) is nilpotent. 

(3) Let PI E Sylp(SP(G)). By Sylow’s theorem, there exists P E SyZ,(G) such that 
PI = PnSP(G). If P1$GG, then there exists M G G such that No(P) I 

No(PJ I M G G. By the Frattini argument, G = SP(G)No(PI). If IG: MJ = q 

is a prime, by Sylow’s theorem, q = 1 + hp. But q[ I SP(G)I and hence q < p, a con- 
tradiction. Hence IG: MI is composite and M E %p”. This yields that 
G = SP(G)No(P1) I M G G, a contradiction; therefore PI” G. 

(4) Let p be the maximal prime divisor or JS”(G)I. The same argument as (3) shows 
that S”(G) is p-closed. Let P E Syl,(S”(G)). Then P char S”(G)char G and it is easy to 
show that S”(G/P) = S”(G)/P. By induction, S”(G/P) has a Sylow tower and so does 

s’(G). 0 

Lemma 2.3. Let G be a$nite group. Then 

(a) G is niZpotent if and only if G = P(G). 
(b) G is nilpotent if and only if M is normal in G for every M E %‘. 

(c) G is nilpotent ifand only ifGIN is nilpotentfor a normal subgroup N of G which is 
contained in Q”(G). 

Proof. (a) G = P(G) if and only if %-” = 0 if and only if No(P) = G for every Sylow 
p-subgroup of G and for every prime p E X(G) if and only if G is nilpotent. 
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(b) By Frattini argument and (a). 
(c) Suppose that G/N is nilpotent and M be a maximal subgroup of G and M E 9’. 

Then M/N a G/N by (a) and hence Mg G. It follows from(b) that G is nilpotent. 0 

Lemma 2.4. Let G be a-finite group. Then 
(a) G is supersolvable if and only if IG; MI is a prime for every M E 9’. 

(b) G is supersolvable if and only zf= S”(G). G is nilpotent if and only if M is normal in 

G for every M E F-“. 

(c) G is supersolvable if and only if G/N is supersolvable for a normal subgroup N of 
G which is contained in S”(G). 

Proof. (a) By Huppert’s well-known theorem, we only need to prove the part “if”. Let 
p be the largest prime of n(G) and P E Syl,(G). Then Pa G. In fact, if it is false, then 
there exists a maximal subgroup M of G with N,(P) I M G G. By assumption, 
IG: MI = q for a prime q < p, which yields that G/Ma is isomorphic to a subgroup of 
the symmetric group S, and hence IG/MoI [q!. In particular, P I Mo. The Frattini 
argument yields that G = Mo No(P) I M, a contradiction. It is easy to show that G/N 
satisfies the hypotheses of G for every minimal normal subgroup N and G. Suppose 
that (a) is false and let G be a minimal counterexample. Then G has unique minimal 
normal subgroup N. It is easy to prove that N = P = F(G) and G = N x M with 
M Q G. Let q be the largest prime of n(M). Since M is supersolvable, we have that 
M I NM(Q) < No(Q) for Q E SylJM)nSylJG). Since M is a maximal subgroup of 
G and Q$G it follows that M = NG(Q). By our assumption, INI = IG: MI = p is 
a prime, which yields that G is supersolvable, contrary to our choice. 

(b) By (a), G is supersolvable if and only if 9” = 0, that is if and only if G = S”(G). 
(c) The same argument as Lemma 2.3(c). 0 

3. Theorems 

Theorem 3.1. Let G be a finite group. Then G is solvable if and only if every maximal 

subgroup of G is c-normal in G. 

Proof. Suppose that every maximal subgroup M and G is c-normal in G. We prove 
that G is solvable. Assume that it is false and let G be a minimal counterexample. If 
G is simple, the by Lemma 2.1(2), G is c-simple, it follows that M = 1 and G is a group 
of prime order, a contradiction. Hence, we assume that G is not simple. It is clear that 
the hypotheses of the theorem are satisfied by any quotient group G/K of G. A trivial 
argument shows that G has unique minimal normal subgroup K with K $ Q(G). Then 
there exists a maximal subgroup M -=z G such that K $ M, i.e. G = KM. Since M is 
c-normal in G, there exists Nq G such that G = MN and NnM I MG = 1. Since 
1 #N it follows that K I N and so KnM = 1. Hence INI = IG: MI = IKI, K = N. 
For any maximal subgroup L G G with LG = 1, we have KL = G. Since L is c-normal 
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in G, the same argument shows that IG : LI = 11(1. By a result of Baer [l, Lemma 31, 
K is solvable. It is clear that G/K satisfies the hypotheses of G. The minimal choice of 
G implies that G/K is solvable. Now that both K and G/K are solvable follows that 
G is solvable, a contradiction. 

Conversely, suppose that G is solvable and M G G. If Mc # 1, consider G/Ma and 
use induction on ICI, we get M/M, is c-normal in G/M,. From Lemma 2.1 it follows 
that M is c-normal in G. Assume Mo = 1. Let N be a minimal normal subgroup of 
G which is certainly abelian. Then G = n M and NnM I Mo = 1. By definition, M is 
c-normal in G. 0 

In the direction of limiting the number of maximal subgroups which we control, we 
prove the following result. 

Theorem 3.2. Let G be a finite group. Then G is solvable if and only if there exists 

a solvable c-normal maximal subgroup M of G. 

Proof. Assume the theorem is false and let G be a minimal counterexample. Let M be 
a c-normal solvable maximal subgroup of G. Then G must satisfy the following: 

(a) M is core-free. If Mo # 1, then M/Ma is a solvable c-normal maximal sub- 
group of G/Ma, which yields that G/Ma is solvable and hence G is solvable, 
a contradiction. 

(b) There exists a minimal normal subgroup K of G such that G = KxlM. Since 
M is c-normal in G, there exists a normal subgroup N and G such that G = NM and 
MnN I Mo = 1. Let L be a minimal normal subgroup of M, which is certainly 
abelian p-subgroup with p E rc(M). 

(c) (p, IKl) = 1 and C,(L) = 1. In fact, C,(L) is normalized by both M and K and 
hence C,(L) a G. If C,(L) = K, then 1 # L s Mo, contrary to (a). Therefore C,(L) = 1. 
The orbit formula implies that (p, IKl) = 1. 

(d) K is a q-subgroup for a prime q. 
By 15, Theorem 6.2.21 and (c), there exists an unique L-invariant Sylow q-subgroup 

Q of K for every prime q E n(K). For any element m E M, (Qm)L = (QL)” = Qm, i.e. Q” 
is also a L-invariant q-Sylow subgroup of K. From the uniqueness it follows that 
Q” = Q and hence Q is M-invariant. Since M is a maximal subgroup of G, 
Q ><1 M = G = K XI M. This yields that K = Q is a q = subgroup. 

Now both K and G/K are solvable implies that G is solvable, contrary to our 
choice. 0 

We can also discuss p-solvability in terms of c-normality. 

Theorem 3.3 Let G be a jnite group and p be the maximal prime divisor of IGI. Zf M 

is c-normal in G for every non-nilpotent maximal subgroup M E F”, then G is p- 
solvable. 
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Proof. Assume that the theorem is false and G is a minimal counterexample. Then 
(1) %pc # 8. If %pc = 8, then G = SP(G) is p-closed by Lemma 2.2(3). Hence, Pa G 

for Sylow p-subgroup P and G is p-solvable, a contradiction. 
(2) M is c-normal in G for every M E k rpc It is sufficient to prove that G has no . 

nilpotent maximal subgroup M with M E d rpc In fact, suppose that there exists . 

M E %pc with M nilpotent. Since G is non-solvable, Thompson’s theorem [S, 10.3.21 
implies that M2 # 1. If M is a 2-subgroup, then p = 2 and G is a 2-group, contrary to 
our choice. Hence, G is a non-solvable and Mt, # 1 # M2. By [6, Theorem 11, M2, is 
normal in G. It is easy to show that G/M2, satisfies the hypotheses of G. The minimal 
choice of G yields that G/M*, is p-solvable. Now M2, is solvable implies that G is 
p-solvable, a contradiction. 

(3) G has an unique minimal normal subgroup N and G/N is p-solvable. By (1) and 
Lemma 2.1(2), G is not simple. For every non-trivial normal subgroup N of G, the 
minimal choice of G yields that G/N is p-solvable. Since p-solvable groups form 
a saturated formation, there exists an unique minimal normal subgroup N of G. 

If p$‘Nl or INI is a p-group, then N is p-solvable and then G is p-solvable, contrary to 
our choice. We assume that pj INI and N = Np. The Frattini argument yields that 
G = N,(N,). Let P be a Sylow p-subgroup of G such that Np = PnN. Since 
1 # Np # N, N,(N,) # G. There exists M G G such that N,(P) I N&N,) I M; 
Hence of M E %p. From N &M it follows that MG = 1. If 1G: M( = q with q a prime, 
then q < p and lG1 \q!, a contradiction. Hence (G: MI is composite and M E %-pc. By 
(2), M is a c-normal in G and it follows that there exists a normal subgroup K such 
that NnM < KnM I MG = 1. (G: MI, = 1 yields that (Nj, = 1, a contradiction. 
There is no counterexample. 0 
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